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Antiferromagnetism and the metal-insulator transition in 
the infinite-dimensional Hubbard model 
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lnstiu~ fiir Theomische Physik, Universtit Bmnen, Postfach 330440, D-28334 Bremen. 
Germany 

Received 6 March 1995, in final form 11 July 1995 

Abstract We study the Hubbard model in infinite dimension d = m within an approximation 
reproducing simultaneously the atomic lit and the weak-coupling limit up to second order 
in the interaction stFength U. Depending on U we find a paramagnetic metal, a paramagnetic 
insulator, or an antiferromagnetic insulator. The stabi!iry of the antiferromagnetic phase is 
investigated by calculating the grand canonical potential. We present the phase diagram in the 
T-U plane and results for the magnetization m as a function of temperature T. For small 
values of U the andferromagnetic phase transition is continuous, bui for larger values of U the 
approximation yields a fint-arder magnede phase transition. Results for the densiry of states 
N ( E )  are presented: it eithe~ exhibits one single band or an upper and a lower Hubbard band 
separated by the Mott gap. The upper and lower Hubbard band may exhibit additional magnetic 
structure, depending on the value of T and U: 

1. Intmduction 

The Hubbard model was originally introduced as the simplest model for strongly correlated 
electron systems which may exhibit an insulating Mott state, i.e. a metal-insulator phase 
transition [I, 21, and is used to model itinerant magnetism. Apart from an exact solution in 
one dimension for the ground state of the Hubbard model 131, no exact results are available 
for this problem. The main problem to deal with is the correct description of the transition 
from the atomic l i t  to the itinerant (band) l i t .  As r-gards magnetism, we h o w  oniy 
special limits of the Hubbard model. In the limit of a small hopping parameter t compared 
to the interaction strength U, second-order perturbation theory with respect to the hopping 
I can be used to transform the Hubbard model for half filling to an effective Heisenberg 
model with exchange coupling 2t2/lUl [4]. In this special case antiferromagnetism is 
predicted. Away from half filling the HM may be transformed into the t-J model 151 and 
antiferromagnetism should exist at least in a certain parameter regime. 

Metmer and Vollhardt [6] recently introduced the limit of infinite spatial dimensionality 
(d + CO), in which the self-energy X becomes site diagonal, i.e. the local approximation 
becomes exact. This leads to a simplified Hubbard model ford + a3 (for a review see [7]), 
hut the essential properties are similar as in three dimensions. Because of the simplifications 
one can hope to achieve the exact solution of the infinite-dimensional Hubbard model, which 
would provide for a proper mean-field theory of the Hubbard model in a general dimension 
[8, 91. The self-energy of the infinitedimensional Huhhard model ‘knows about’ the lattice 
only via the local propagator G(z) .  That is why the functional dependence of the self-energy 
on the local Green function must he the same as in the case of an atomic problem [8, IO] 
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or of an impurity problem like the single-impurity Anderson model [ll].  This allows 
for a mapping onto an atomic problem in the presence of two timedependent, auxiliary 
Kadanoff-Baym [12] fields. 

For the general Hubbard model in infinite dimension only numerical methods have been 
possible up to now. These numerical methods have recently also been used to calculate 
antiferromagnetism. For example antiferromagnetism has been studied by time discretization 
[13], by quantum Monte Carlo calculation [14], the exact enumeration method [15], by 
iterated perturbation theory (IPT) [151 of the Hubbard model, and by the NCA for the 
effective single-impurity Anderson model [16]. In the case of a weak-coupling interaction, 
i.e. U << t ,  we know that the SCR theory of Moriya [17] or RF'A-like theories [18] are 
successful in explaining the weakly ferromagnetic or antiferromagnetic (AF) l i t .  

However, because we are far away from any unified theory there exist an immense 
variety of approximate theories; see for instance [19] and references therein. Nevertheless, 
it is necessary to develop improved approximations to the infinitedimensional Hubbard 
model. Improved approximations should at least reproduce the atomic limit (hopping 
f = 0). the l i t  of vanishing U, the weak-coupling limit and-as a result Fermi-liquid 
properties and with d = -the exact solution of the Falicov-Kimball model (FKM) [ZO]. 
The Edwards-Hertz approximation @HA) [Zl], the approximation of Martin-Rodero and 
co-workers [ZZ], and the IF'T [15] at half filling contain these limits. In this paper we 
investigate the magnetic properties of the EHA and the question concerning the metal- 
insulator transition and the antiferromagnetic-paramagnetic (AI-PM) phase transition for 
the symmetric case, i.e. half-filled band. For a discussion of what this model can describe 
see [23]. 

The paper is organized as follows: section 2 describes the slightly modified EHA on 
a bipartite AB-lattice and the basic equations: the numerical results and our discussion are 
presented in section 3; section 4 contains our conclusions. 

S Wennbter and G Czycholl 

2. Edwards-Hertz approximation on a bipartite AB-lattice 

The Hubbard Hamiltonian reads [I] 

where  CL,^ ( c R . ~ )  creates (annihilates) an electron at site R of the d-dimensional hypercubic 
lattice and ? z R . ~  = C ~ ~ C R . , , .  U is the spin index and E: denotes the bare atomic energy for 
spin-up, spin-down electrons, t is the nearest-neighbour hopping matrix element and U is 
the on-site Coulomb interaction strength. The hopping term in the Hamiltonian is restricted 
to nearest neighbours. The scaling of the hopping term provides for a non-trivial limit in 
infinite dimension d = 00 [6. 71. The density of states No(€) per spin direction of the 
non-interacting system has a Gaussian form [a]: 

with 4t2d = t" = constant The on-site self-energy ZO(R, R; io.) of a bipartite AB- 
lattice, can be written as follows: 
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For an AF ordered state we have Q = (r, x ,  ...) and the following symmetry of the self- 
energy: 

We set the lattice constant a to unity. For a ferromagnetic or PM state we have the symmetry 

We restrict the calculation to the sublattice A and drop the index A. After inverting the 

CA.= F E , - . .  (4 ) 

ZAP = X B . c .  

Dyson equation G-l = Go-' - E, we get the locsl Green function 

(6) 
1 1 

&(h) = $X,(iwn) + C$(i@.)l X&J,) = $ X ? ( i d  - Br( id1  
and U = +1 (-1) for electrons with spin t (A). p is the chemical potential. The fermion 
Matsubara frequency is defined by w. = (Zn+ l)n/@. n = 0, f l ,  f2, ..., and @ = 1 / k e T .  
For the PM state, Bz is zero and equation (5) reduces to the standard expression for the 
on-site Green function in infinite dimension. The occupation number of the spin-a electrons 
of the interacting system is defined by 

1 1 2 m  n, = lim - xeba 'G,( ion)  = - + - xReG,,(iw,J 
r++OB 2 f i  n=O 

(7) 

We define the magnetization on the sublattice as 

(8) 

Recall that because we restricted ourselves to sublattice A, the magnetization for sublattice 
B is given by mB = -m. 

According to Edwards and Hertz [21] we use the following m a &  for the self-energy 
on the imaginary axis: 

(9) 

1 
2 

m = -(nt - nr) .  

Un-, 
I - (U - &(iwa))Gz(iwn - zg +,E#) 

Zo (iw.) = 

where 
-0 GtF(r)G!J(r)G!f(-r) G,(r) = - 

n-,,(l -n-, ,)  
The Matsubara Green function G(i& is the Fourier coefficient of the periodic temperature 
Green function G,,(r): 

1 B 

B .  
G,(T) = -~e- i" rG, ( iwn)  G,(iw,) = 1 e'm"rG,(r) dr. (11) 

With the help of equations ( 1  1) we get for the approximation for Go(z) (equation (10)) 
d:(iw. - X, + E , )  
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Note that the band filling n-, is the filling of the system described by the ansatz for the 
self-energy (equation (9)). G x F  in equation (10) and equation (12) is the Hartree-Fock 
Green function, i.e. it is determined by equations (5), (1 1) with the replacement 
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(13) 
1 1 
2 2 &(imn) = - (E t  + E$)  &(ion) = - (E t  - E l ) .  

For this case the self-energies CI, C2 are independent of frequency. 

self-consistently under the constraint 
The effective atomic levels E, for introduced the u-electrons have to be determined 

E t  + E$ = Un. (14) 

E ,  = Un-,. (15) 

n is the full occupation number: n = nt + n$ and for half filling n = 1 the self-consistent 
calculation of the effective atomic levels reduces to the relation 

The approximation (10) for f?E(r) reproduces the second-order perturbation theory (SOPT), 
when expanding the self-energy expression (9) in powers of the Coulomb correlation U up 
to second order in U and the atomic limit; also the exact Brandt-Mielsch solution [ 101 of 
the FKM [ZO] is contained in the general approximation (9). 

For half filling we have the chemical potential p = U/2.  In this case the true occupation 
number n, corresponding to the Green functions G, to be determined, is equal to the 
occupation number io, corresponding to f?:: 

If we are away from half filling, we have to calculate the chemical potential self-consistently, 
until the constraint n = Eo = io, + is fulfilled. 

Nevertheless, in both cases we have to calculate self-consistently the effective atomic 
levels and the band fillings nt, nl under the constraint nt  + ni = 1. 

To obtain information on the thermodynamically stable phase we must calculate the 
grand canonical potential (GCP). The GCP is determined by a coupling constant integration: 

+E$)(ion){GF)(imn) - GF)(imn)]]. (16) 
AQu is the difference between the GCP of the actual system and that of the system without 
interaction (U = 0). ELA) and G,“) are the self-energy and the Green functiov for the 
effective interaction strength = hU. For fixed temperature T there exists a lower bound 
of the coupling constant h,, at which no AF phase exists. The corresponding interaction 
strength is = Uh,. It follows that 

with T;’c) = T ,  where AnAF denotes the GCP in the AF phase and AQpARA denotes the 
GCP in the PM phase (nt = ni). To calculate the GCP in the PM phase we start with 
nt = n+ = 0.5, which is always a solution of the equations. 
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Having obtained the thermodynamic information of the system, we have to calculate 
the density of states N(o). Recently we calculated the density of states for the PM case 
[23]. With the help of equations (3x11)  in [231 we are able to calculate the density of 
states for the AF case. Because we are now looking for solutions on the real axis, we solve 
the problem with the help of the h e r s - K r o n i g  relation. The approximation (10) takes 
the form 

In equation (9) the Matsubara frequency is replaced by z + @+io+ and 6z(io,, - & +E,)  
by G,(z). The unperturbed bipartite AB density of states N: has the form 

0 for lo- Ell Q IEzI 

N;(o) = [ $; El + u ~ z ) / ~ ~ ]  No (20) 

[o - E# - E; sign@ - E l )  otherwise 

with 

(21) 

and sign@) = 1 for x > 0, sign(x) = -1 for x < 0. 
The equations are solved for given U, and T, and total occupation number n = n, +n-,,. 

We start from an initial guess for the band fillings n,, n-,, and chemical potential p, and 
determine the effective atomic levels Ec necessary to yield the given no. In the special case 
of half filling (n = 1) certain simplifications hold, namely for symmetric reasons we have 
p = U / 2  and E,, = Un-,. With the help of these effective levels, we are able to solve 
the CPA-like equation (9) for the self-energy. Knowledge of the self-energy allows us to 
calculate the Matsubara Green function (equation (5)) and the band fillings. The resulting 
band filling allows for a new determination of the effective levels E,, and the procedure is 
iterated until convergence is reached. Away from half filling a further self-consistency has 
to be added, i.e. the full occupation number allows for a new determination of the chemical 
potential p so that the guessed hand filling is reproduced and the procedure is iterated until 
convergence is reached. Numerical results are presented in the following section. 

1 1 
2 

Ez - (E? - Eh) E1 = + Eh) 

3. Numerid results and discussion 

For our numerical calculations we measure energies, frequencies and temperature in units of 
the effective bandwidth t* = 1. We restrict the calculation to the half-filled system. At half 
filling the chemical potential is /.i = U / 2  and the effective atomic levels are E, = Un-,. 

Figure l(a) shows the Ne61 temperature T, determined as the lowest temperature at 
which the magnetization m vanishes, as a function of the interaction strength U for a self- 
consistent Hartree-Fock (HF) approximation, a self-consistent SOPT approximation relative 
to the Hartree term (SOPT-HF) and for the EHA approximation. For all three calculations 
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e 

PM, meta l  

U 

U 
Figure 1. (a) Neil temperature T, calculated from magnetization as a function of U ,  for band 
filling n = 1 and chemical potential j~ = U / 2  obtained within the self-consistent HF, SOPT-HF, 
and EHA calculalions. lnsec N d l  temperam T, as a function of U for the self-consistent 
HF calculation. (a) Thermodynamic smble phase diagram in the T-U plane determined as the 
phase with the lowest GCP, band filling n = 1 and chemical potential j~ = Up. The dashed 
line indicates the phase m i t i o n  as obtlined within the EHA without calculating the GCP. 
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the Ne61 temperature T, increases with increasing interaction strength U and no saturation 
or decrease of the Ne61 temperature Tc is observed. For small interaction strength (roughly 
U < 1) the Ne61 temperature T, determined within the SOFT-HF coincides with that 
obtained within the EHA. Also no saturation or decrease of T, as a function of increasing 
U is observed in a fully self-consistent SOPT calculation [24]. For small U it follows 
from SOFT calculations [24] that T, - bexp(-a/U), which is also correct for the simple 
self-consistent Hartree calculation (see the inset of figure l(a)). However, the calculation 
shows that roughly for U > 1 a first-order transition occurs and with increasing U the Ne61 
temperature increases. Hence we obtain an unusual kind of magnetism in the EHA model, 
at least for U > 1. A similar result has been obtained in SOPT [24], within which for small 
interaction strength (U < 1.4) a continuous magnetic phase transition occurs, but for larger 
values of U a first-order transition occurs. However, we cannot exclude the possibility that 
the first-order transition might be an artifact of the approximation made for intermediate 
coupling strength U. On the other hand, we do not h o w  of any principle or argument 
excluding first-order AF phase transitions. 

As we can see from figure l(a) SOPT and the EHA yield a substantial correction for the 
original Ne61 temperature compared to the corresponding result obtained within the Hartree 
approximation, but there is only a small difference between the Ned temperature for the 
SOFT calculation compared to that for the EHA calculation. We conclude that the metal- 
insulator transition in the EHA model has only a small effect on the Ne61 temperature, 
because in the EHA the metal-insulator transition is present, but in SOPT it is absent. 
Enumeration methods [15] and the NCA [16] do not support the existence of a magnetic 
first-order tsansition. 

In figure l(b) we present the thermodynamic stable phase diagram for the EHA in 
the T-U plane. We observe three stable phases, a PM metal, a PM insulator and an AF 
insulator. For interaction strength U < 3 we observe a PM metal and an AF insulator, 
which survives for very small interaction strength U only at zero temperature. For larger 
U the system may come into the PM insulating phase, which first occurs as a function of 
temperature roughly for T 2 0.25 and U 2 3.75. Below this temperature the system is 
an AF insulator. If we artificially extend the PM metal-insulator transition into the AF 
phase we get the dashed line in figure l(b). In the PM phase we obtain a continuous phase 
transition between the insulating phase and the metallic phase, but a first-order magnetic 
phase transition at Least for U 2 1. 

The dashed line in the PM region corresponds to the ‘EHA line’ of figure l(a), i.e. it 
indicates the phase transition between the PM phase and the AF phase as obtained within 
the EHA without calculating the GCP. For intermediate values of U (U 2 2) one would 
obtain an additional phase, an AF metal, which develops as a function of U between the AF 
insulator and the PM m e W M  insulator. However, the calculation of the GCP shows that 
it is not sufficient to calculate the Net1 temperature as the lowest temperature at which the 
magnetization m vanishes and that the AF metallic phase is not stable. Furthermore the GCP 
shows that the EHA yields a first-order magnetic phase transition for U 2 1 but for U < 1 a 
second-order magnetic phase transition, and that three thermodynamic stable phases occur: 
a PM metal, a PM insulator and an AF insulator. The calculated Ne61 temperature has no 
local maximum in the regime from U = 0 to U = 5 and it reaches the value of 0.28 for 
U = 5, which is twice as large as the value obtained using IPT [I51 or QMC methods [14] 
for U N 3. As in the calculation without the GCP the Ne61 temperature does not decrease 
as the interaction strength U is increased but saturates at least for U < 5. 

IF’T [U] gives a different picture; a second-order magnetic phase transition and a first- 
order transition between the PM metal and the Matt PM insulator, i.e. a region with two 
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different solutions (metal and insulator), has been obtained. The corresponding interaction 
strengths are Ucl N 3.7, U, N 4.5 for T = 0 K, which are of the same magnitude as for 
our transition temperature. ET gives a maximum in the Ne61 temperature for interaction 
strength U 3 and it never exceeds the value Tc 2 0.14. Nearly the same values were 
reported from QMC studies 1141. These results are different from the EHA results, because 
in the EHA the Ne61 temperature never decreases as the interaction strength U is increased. 
The reason for this behaviour is that EHA is not correct up to second order in the hopping 
matrix element t ,  i.e. the limit in which the Hubbard model becomes equivalent to the t-J 
model is not properly reproduced in the EHA. 

Figure 2(a) presents the result for the magnetization m as a function of temperature T 
for different interaction strengths U. In the inset of the figure we show the magnetization as 
a function of temperature for the HF calculation and the SOFT-HF calculation. For roughly 
U 6 1, the EHA and SOPT-HF calculation show a continuous AF phase transition, but 
with increasing U a change to a first-order transition is observed. The same happens in 
fully self-consistent SOPT [24]. As there has been up to now no experimental indication 
for a first-order magnetic phase transition, one has to be sceptical and should stress that this 
finding may be an adfact of the approximations. Including the results of the calculation 
of the GCP, the magnetization curves are cut at the temperature kaT 2: 0.1,0.125 for 
U = 2,2.5 yielding a first-order transition too. 

In figure 2(b) we show the result for the magnetization m as a function of interaction 
strength U for different temperatures T. As before, the magnetization m as a function of 
U never decreases as U is increased, at least for U f 5 .  The magnetization saturates for 
increasing U approximating the value of 0.5. This is not the correct physical picture, because 
for half filling and U >> f we can transform the Hubbard model to an effective Heisenberg 
model with exchange coupling J = 2t2/IUI. In a simple molecular field treatment of the 
Heisenberg model the Ne61 temperature is proportional to the exchange coupling constant J ,  
which is why T, and the magnetization should asymptotically go to zero as U is increased. 

In figure 3(a) we present the AF density of states N,(o) for different values of 
temperature T as a function of energy o for interaction strength U = 2. We see the 
AF gap roughly for T < 0.15; the system is an AF insulator. For higher temperatures 
the AF gap reduces to a pseudogap and the system becomes a thermodynamically unstable 
AF metal, which goes into the Ph4 phase for T = 0.1722. This behaviour of the system 
is demonstrated in the inset. For temperature kBT = 0.15 the density of states shows an 
AF gap between the lower and upper Hubbard bands. For half filling we have an AF 
insulator. Increasing the temperature to 0.16 the AF gap vanishes to a pseudogap and the 
density of states shows only one partially filled single band; consequently the system is an 
AF metal. The sum rule is fulfilled. The upper and lower Hubbard bands show additional 
structure due to the sublattice structure of the antiferromagnet. The densities of states 
N+, NI are symmetric around the chemical potential for half filling (see figure 3(b)). The 
additional magnetic structure in the subbands is well understood in the Stoner picture for 
band antiferromagnetism. In the Stoner model the subbands are rigidly shifted with respect 
to each other by an energy of U m  1191 

In  figres 4(a) and 4@) we show our results for the imaginary part and the real part 
of the self-energy for interaction strength U = 2 as a function of frequency for different 
temperatures T. The imaginary part of the self-energy shows the AF gap and the additional 
structure due to the sublattice structure. 
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Figure 2. (a) Magnetization m as a function o f  temp'emture kBT for interaction strength U = 2 
and U = 2.5, band filling n = I and chemical potential p = UfZ. Inset: m as a function ofkaT  
for HF, and SOPl-HF calculations. (b) Magnetization m as a function of U for temperatures 
keT = 0.1,0.3. band filling n = I and chemical potential p = U / 2 ,  
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w 
F q e  3. (a) Density of stales N,(w) as a function of energy o for different valuw of kBT 
for U = 2, band filling n = 1 and chemical potential & = U / 2 .  Inset: density of states for 
kaT = 0.15.0.16 for U = 2. (b) Density of states N A w )  as a function of energy o for 
ksT = 0.1 and U = 2 band filling n = L and chemical potential & = Up. The solid c w e  
corresponds to N + ( o ) ,  the dotted line to Nl(w) .  
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Figure 4. (a) The imaginary pan of the selfenergy Z(o) as a function of o for different values 
of kaT and interaction strength U = 2, band filling n = 1 and chemical potential g = Uf2. 
l3) The real part of the self-energy E(w) as a function of w for different values of 4 T  and 
interaction strength U = 2 band filling n = I and chemical potential p = UJ2. 

4. Conclusions 

In the present paper we investigate the possibility of antiferromagnetism and of a metal- 
insulator transition in the EHA for the d + CO Hubbard model at half filling. From the 
earlier papers [21, 231 we know that the EHA is exact in the atomic limit, i.e. in the limit 
of vanishing hopping t ,  but not to order tZ ,  which should reproduce the Heisenberg limit, 
and exact in the band limit. In the weak-coupling limit the EHA can be expanded in the 
interaction strength and agrees up to second order with the standard expressions for the 
self-energy. Furthermore the EHA is exact for the d = 00 FKM. 
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The EHA is applicable for small inteiaction strength U and contains SOFT Fermi- 
liquid properties. Since the EHA is constructed to recover the above limits and is of 
interpolating type, it contains a metal-insulator transition as the Hubbard III or alloy 
analogue approximation [Z]. 

Despite the fact that we know that the local approximation for the self-energy is exact in 
infinite dimension, we do not h o w  the functional dependence of the self-energy on the local 
Green function. Having used a diagrammatic analysis [25] of the electron self-energy in the 
local approximation Edwards obtained the self-energy functional: = Sl[G/(l+ BG)] 
and &[GI is universal for d = 00. Using this diagrammatic analysis we could recover 
the EHA. There SI was the alloy analogy functional with G replaced by 6 (for details see 
[25]). However, the main justification for the EHA is the correct weak-coupling limit and 
the exact atomic limit (vanishing hopping). This confirms reliability of the EHA, i.e. we 
think that in the weak-coupling case the EHA can be justified; then Fermi-liquid behaviour 
occurs (for half filling in the paramagnetic case and T = 0 for U 6 2). 

The EHA contains three thermodynamic stable phases: a PM metallic phase, a PM 
insulating phase and an AF insulating phase. For interaction strength U 2 1 the model 
shows a first-order magnetic phase transition. Below this interaction strength the EHA 
shows the normally expected second-order transition. The Ne61 temperature as a function 
of U does not have the right asymptotic behaviour, i.e. it never goes to zero as U is 
increased. 

An advantage of the EHA is the fact that it is able to deal with all temperatures and 
with imaginary and real frequencies and, judged from the reproduction of exactly known 
limits, the EHA appears to be one of the best existing general approximation schemes of 
the Hubbard model, at least for infinite dimension. 

Nevertheless, the EHA contains several difficulties. First of all the EHA does not 
contain the t-J limit for U >> t and as a consequence does not give the right behaviour of 
the Ne61 temperature, T, - t2/IUI. The EHA contains for intermediate coupling strength 
U a metallic non-Fermi-liquid phase and a first-order AF transition, which has never been 
observed. In particular these results obtained for intermediate U may be regarded as an 
artifact of the EHA. 

In conclusion we can say that the EHA is not completely satisfactory, in the sense that 
the EHA should be corrected to include the self-energy contributions in order tZ  and if 
possible in further powers in U. 

References 

[I] Hubbard I 1963 Proc. R Soc. A 276 238 
[21 Hubbard J 1964 Proc. R Soc. A 281 401 
[3] Lieb E H and Wu F Y 1968 Phys. Rev. Len. 20 1445 
141 Anderson P W 1963 Solid Sfore Physics vol 14 (New Yodt: Academic) p 99 
I51 Gros C, Joynt R and Rice T M 1987 Phys. Rev. B 36 8190 
161 Metzner W and Vollhxdt D 1989 Phy.& Rev. &If. 62 324 
[71 Vollhardt D 1993 Correlated Electron Systems ed V J Emely (Singapore: World Scientific) p 57 
[SI h i s  V 1991 2 Phys. B 83 227; 1989 Phys. Rev. B 40 11331 
[91 Janis V and Vollhardt D 1992 Inr. J .  Mod. Phys. 6 731 

[IO] Brmdt U and Mielsch C 1989 Z Phys. B 75 365; 1990 Z Phys. B 79 295; 1991 Z Phys. B 82 37 
[ l l ]  Georges A and Kotliar G 1992 Phys. Rev. B 45 6479 
[12] Bayym C and Kadanoff L P 1961 Phys. Rev. 124 287 

[I31 Gicsekus A and B m d t  U 1993 Phys. Rev. B 48 10311 
Baym C 1962 Phys. Rev. 127 1391 

1141 Jwrdl M 1992 Phys. Rev. Let?. 69 168 



Antiferromagnetism in the d = 00 Hubbud model 7347 

Jarrell M and Pruschlte Th 1993 2 Phys. B 90 187 
[I51 Georges A and Krauth W 1993 Phys. Rev. B 48 7167 
[I61 Htilsenbeck G and Stephan F 1994 2. Phys. B 94 281 
[17l Moriya T 1985 Spin Flucruationr in Itinerant Elcctmn Magnetism (Springer Series in Solid-Store Sciences) 

(Berlin: Springer) 
[181 Brandt U. Pesch W and Tewordt L 1970 Z Phys. 238 121 

[I91 Nolting W and B o a e l  W 1989 Phys. Rev. B 39 6962 
[ZO] Falicov L M and Kinball J C 1969 Phys. Rev. Lett. 22 997 
[XI Edwards D M and Hertz J A 1990 Phyrica B 163 527 
[221 Martin-Rodero A, Louis E mores F and Tejedor C I986 Phys. Rev. B 33 1814 
[a] Wermbter S and Czycholl G 1994 J. Phys: Condens. Matter 6 5439 
(241 Halvorsen E and Czycholl G 1994 1. Phy.s: Condens. Matter 6 10331 
[XI Edwards D M 1993 1. Phys.: Condenr. Maner 5 161 

Brandt U. Lustfdd H, Perch Wand Tewordt L 1971 J. Low Temp. Phys. 4 79 


